
Technical Note

Similarity solutions of stationary thermoelasticity with the
frictional heating

A. Yevtushenkoa,*, S. Koniechnyb

aDepartment of Mechanics, Lviv State University, Universitetska Street, 1, 290602 Lviv, Ukraine
bDepartment of Structural Mechanics, Technological University of Lodz, Al. Politechniki 6, 94-950 Lodz, Poland

Received 24 July 1998; received in revised form 2 December 1998

Abstract

Similarity transformations are constructed and used to obtain an exact solution for the axisymmetric boundary
value problem of an elastic half-space subjected to a continuous point heat source on its surface. It is found to

agree with known results, obtained by Parcus with the help of the thermoelastic potential method. The temperature,
displacements and stresses are used in the solution of the thermoelasticity contact problem with frictional heating
for the `pin-on±half-space' tribosystem. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction and statement of the problem

Similarity methods and their applications to various

boundary value problems in engineering have been

developed by Hansen [1] Ibragimov [2], Bluman and

Cole [3] and Ovsjannikov et al. [4].

In this paper, similarity analysis is applied to the

axisymmetric static boundary value problem for a

semi-in®nite body which is subjected to a cylindrical

pin normal to its surface at origin. The pin is

embedded into the surface of the half-space by normal

load P and rotates uniformly with speed o. Owing to

friction the heat is generated within the contact area.

The following assumptions were made for simplicity:

1. the pin is rigid and thermoinsulated;

2. the surface of the half-space outside the region of

heating is free and insulated;

3. the power Q of the heat source on the interface is

equal to the power of the friction force

Q � foaP; �1�

4. the system is in steady-state.

The problem under consideration is the sum of two
separate problems. The ®rst, when the thermal e�ects
are absent (the pin is stationary, that is, Q=0), reduces

to a semi-in®nite solid, subjected to a concentrated
normal force on its boundary. The solution of this pro-
blem by means similarity methods was obtained by

Chowdhury and Glockner [5] for the `hot pin' contact
problem. We calculate the temperature, displacements
and stresses in the second case, when the continuous

point heat source of the power Q on the surface of the
half-space is acting. The closed form of the solution is
derived and is found to agree with a known result,
given by Parcus [6].

We note that the axisymmetrical contact problem of
stationary thermoelasticity involving frictional heating
due to rotating of the sphere on the surface of the

half-space has been studied by Barber [7] using the
original numerical method and by Yevtushenko and
Kulchytsky-Zhyhailo [8,9] by means of the Hankel

integral transform method. The corresponding contact
problem in which a parabolic annular punch pressed
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into a plane surface and rotates uniformly is con-
sidered by Yevtushenko and Kulchytsky-Zhyhailo [10].

2. Basic equations and boundary conditions

Let us consider a point heat source Q which is loca-
lized on the surface of a half-space. Due to axial sym-
metry, the cylindrical coordinate system r, j and z is

®xed to the source with the z-axis directed into the
half-space. The resulting thermal ®eld T=T(r, z ) is de-
rived from the following heat conduction problem:
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The Duhamel±Navier equations for static thermoelasti-
city are [11]
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The stress±displacement-temperature relations are
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The boundary conditions on the surface z=0 of the
half-space are

szz�r, 0� � 0 �12�

Nomenclature

a radius of the pin
b, c material constants
E Young's modulus

f coe�cient of friction
K thermal conductivity
P normal force

Q power of the frictional point heat source
r radial coordinate
T temperature

u radial displacement
w normal displacement
z normal coordinate.

Greek symbols

a coe�cient of the thermal expansion
d(�) Dirac's delta-function
l, m LameÂ constants

n Poisson's ratio
o rotating speed.
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srz�r, 0� � 0: �13�

Due to the symmetry of the problem the radial stress
vanishes on the axis of the symmetry r=0:

lim
r40

r2srr�r, z� � 0 for any zr0: �14�

The physical condition

lim
r40

w�r, z� � 1 for any zr0 �15�

states that the vertical displacement w will be

unbounded for any horizontal plane z=const at large
distances from the source [6].

3. The similarity transformations

We seek a transformation of the system of partial

di�erential equations (2), (5) and (6) and boundary
conditions (3), (4) and (12)±(15), which will reduce the
number of the independent variables r and z by one,
i.e. lead to ordinary di�erential equations (ODEs). To

that end we select a one-parameter transformation
group, i.e. recast the problem in terms of the following
dimensionless variables
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z0
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,

w� � w
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�16�

where r0 and z0 are arbitrary reference variables and
T0, u0 and w0 depend on the boundary conditions.
Taking into account the de®nition (16), Eqs. (2)±(6)

and (12)±(15) can be rewritten as
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where the relation d(r �r0)=d(r �)/r0 has been used.

Furthermore, we will ®nd an absolute invariant Z
which is a function of the independent variables r and
z alone. Absolute invariance demands that each of the
factors enclosed in the rectangular brackets in Eqs.

(17)±(25) should be equal to one. This gives

r0
z0
� 1,

w0

u0
� 1,

T0r0
u0
� 1, T0r0 � 1: �26�

Eqs. (26) suggest the following form for the similarity
transformation:

T�r, z� � 1

r
y�Z�, u�r, z� � U�Z�, w�r, z� �W�Z� �27�

where the new independent variable is the absolute
invariant

Z � z

r
: �28�

Di�erentiating of the relations (27) with respect to r
and z gives
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4. Integration of the ODEs

Substituting the relations (27)±(30) into Eqs. (2), (5)
and (6) yields
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Thus, we obtain three coupled ordinary di�erential

equations (31)±(33) with variable coe�cients for the
unknown functions y, U and W. Eqs. (31) and (32)
can be integrated directly. We ®nd
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We multiply Eq. (32) by Z and subtract the result from
Eq. (33). After dividing by (1+Z 2)3/2 and integrating
we ®nd
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Making use of the boundary conditions (3) and (4), it
is found that
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Eliminating dW/dZ from Eqs. (35) and (36) leads to
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Dividing Eq. (39) by (1+Z 2)3/2 and integrating we
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Substituting the function U (40) into Eq. (36) and inte-
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In Eqs. (40) and (41) Di, i=2, 3, 5, 6 are arbitrary con-
stants, which are determined from the boundary con-
ditions (12)±(15). The condition (15) implies that
D6=(D5ÿD3) ln r.

Introducing Eqs. (27), (40) and (41) into Eq. (8)
gives
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and from the symmetry condition (14) we ®nd that

D2 � ÿD5: �43�
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Taking the relation (43) into account, Eqs. (40) and
(42) can be rewritten as
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Writing Eqs. (9)±(11) in terms of the functions U (44)

and W (41) and taking the relations (27) into account
we ®nd
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Substituting the expressions (47) and (48) into the
boundary conditions (12) and (13) leads to a system of

two algebraic equations for the constants D3 and D5:
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5. The ®nal result

Using (7), the coe�cient c/(1ÿb ) in Eqs. (50) is
equal to

c
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and Eqs. (27), (37), (41) and (44)±(48) can be expressed

in the ®nal form as
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where R=(r 2+z 2)1/2.
The expressions (52)±(56) agree with those arrived at

by Parcus [6] by means of the thermoelastic potential
method. Adding this solution to the known solution
[5] for the case of concentrated normal force applied

to the surface of the half-space, we obtain the solution
of the contact problem with frictional heat generation
for the tribosystem `pin-on±half-space'.
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